Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Virol ; 97(6): e0028623, 2023 Jun 29.
Article in English | MEDLINE | ID: covidwho-2315599

ABSTRACT

We identified neutralizing monoclonal antibodies against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) variants (including Omicron variants BA.5 and BA.2.75) from individuals who received two doses of mRNA vaccination after they had been infected with the D614G virus. We named them MO1, MO2, and MO3. Among them, MO1 showed particularly high neutralizing activity against authentic variants: D614G, Delta, BA.1, BA.1.1, BA.2, BA.2.75, and BA.5. Furthermore, MO1 suppressed BA.5 infection in hamsters. A structural analysis revealed that MO1 binds to the conserved epitope of seven variants, including Omicron variants BA.5 and BA.2.75, in the receptor-binding domain of the spike protein. MO1 targets an epitope conserved among Omicron variants BA.1, BA.2, and BA.5 in a unique binding mode. Our findings confirm that D614G-derived vaccination can induce neutralizing antibodies that recognize the epitopes conserved among the SARS-CoV-2 variants. IMPORTANCE Omicron variants of SARS-CoV-2 acquired escape ability from host immunity and authorized antibody therapeutics and thereby have been spreading worldwide. We reported that patients infected with an early SARS-CoV-2 variant, D614G, and who received subsequent two-dose mRNA vaccination have high neutralizing antibody titer against Omicron lineages. It was speculated that the patients have neutralizing antibodies broadly effective against SARS-CoV-2 variants by targeting common epitopes. Here, we explored human monoclonal antibodies from B cells of the patients. One of the monoclonal antibodies, named MO1, showed high potency against broad SARS-CoV-2 variants including BA.2.75 and BA.5 variants. The results prove that monoclonal antibodies that have common neutralizing epitopes among several Omicrons were produced in patients infected with D614G and who received mRNA vaccination.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Animals , Cricetinae , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Antibodies, Neutralizing , Epitopes/genetics , RNA, Messenger , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
2.
Allergy Asthma Clin Immunol ; 18(1): 78, 2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2005613

ABSTRACT

OBJECTIVES: Oral corticosteroids reduce the antibody titer of the BNT162b2 mRNA vaccine against SARS-CoV-2. To date, the effect of inhaled corticosteroids on antibody titers is unknown. STUDY DESIGN: The design of this study is retrospective study. METHODS: We analyzed the relationship between the clinical features and total antibody titers against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein in 320 subjects who had never been infected with Coronavirus disease 2019 (COVID-19) and were vaccinated the second time with the BNT162b2 mRNA vaccine between October 1 to December 28, 2021. RESULTS: Of the 320 subjects, 205 were treated with inhaled corticosteroids. The median antibody titer of patients treated with inhaled corticosteroids was 572 U/mL, which was significantly higher than that of patients treated without inhaled corticosteroids (454U/mL, P = 0.00258). The median antibody titers of smokers, men, and patients aged 65 years and over, were 315.5 U/mL, 385 U/mL, and 425.5 U/mL, respectively. These results are significantly lower than those of patients who never smoked, women, and patients aged less than 64 years (582 U/mL [P < 0.0001], 682.5 U/mL [P < 0.0001], and 717 U/mL [P < 0.0001], respectively). The multivariate analysis revealed that females and age were independent antibody titer-reducing factors (P = 0.0001 and P < 0.0001, respectively). CONCLUSIONS: The use of inhaled corticosteroids did not reduce the antibody titer against SARS-CoV-2 spike protein. Clinicians should continue treatment with inhaled corticosteroids if indicated.

3.
J Infect Dis ; 226(8): 1391-1395, 2022 10 17.
Article in English | MEDLINE | ID: covidwho-1831182

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant omicron is now under investigation. We evaluated cross-neutralizing activity against omicron in coronavirus disease 2019 (COVID-19) convalescent patients (n = 23) who had received 2 doses of an mRNA vaccination (BNT162b2 or mRNA-1273). Intriguingly, after the second vaccination, the neutralizing antibody titers of subjects against SARS-CoV-2 variants, including omicron, all became seropositive, and significant fold-increases (21.1-52.0) were seen regardless of the disease severity. Our findings thus demonstrate that 2 doses of mRNA vaccination to SARS-CoV-2 convalescent patients can induce cross-neutralizing activity against omicron.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Neutralization Tests , RNA, Messenger , Vaccination
4.
Front Immunol ; 13: 773652, 2022.
Article in English | MEDLINE | ID: covidwho-1742214

ABSTRACT

Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic. The emergence of variants of concern (VOCs) has become one of the most pressing issues in public health. To control VOCs, it is important to know which COVID-19 convalescent sera have cross-neutralizing activity against VOCs and how long the sera maintain this protective activity. Methods: Sera of patients infected with SARS-CoV-2 from March 2020 to January 2021 and admitted to Hyogo Prefectural Kakogawa Medical Center were selected. Blood was drawn from patients at 1-3, 3-6, and 6-8 months post onset. Then, a virus neutralization assay against SARS-CoV-2 variants (D614G mutation as conventional strain; B.1.1.7, P.1, and B.1.351 as VOCs) was performed using authentic viruses. Results: We assessed 97 sera from 42 patients. Sera from 28 patients showed neutralizing activity that was sustained for 3-8 months post onset. The neutralizing antibody titer against D614G significantly decreased in sera of 6-8 months post onset compared to those of 1-3 months post onset. However, the neutralizing antibody titers against the three VOCs were not significantly different among 1-3, 3-6, and 6-8 months post onset. Discussion: Our results indicate that neutralizing antibodies that recognize the common epitope for several variants may be maintained for a long time, while neutralizing antibodies having specific epitopes for a variant, produced in large quantities immediately after infection, may decrease quite rapidly.


Subject(s)
COVID-19/immunology , SARS-CoV-2/physiology , Aged , Antibodies, Viral/blood , Broadly Neutralizing Antibodies , Cross Reactions , Female , Humans , Immunity, Humoral , Immunodominant Epitopes/immunology , Male , Middle Aged , Time Factors
5.
Open Forum Infect Dis ; 8(10): ofab430, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1462455

ABSTRACT

BACKGROUND: As of March 2021, Japan is facing a fourth wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To prevent further spread of infection, sera cross-neutralizing activity of patients previously infected with conventional SARS-CoV-2 against novel variants is important but has not been firmly established. METHODS: We investigated the neutralizing potency of 81 coronavirus disease 2019 (COVID-19) patients' sera from the first to fourth waves of the pandemic against SARS-CoV-2 D614G, B.1.1.7, P.1, and B.1.351 variants using their authentic viruses. RESULTS: Most sera had neutralizing activity against all variants, showing similar activity against B.1.1.7 and D614G, but lower activity especially against B.1.351. In the fourth wave, sera-neutralizing activity against B.1.1.7 was significantly higher than that against any other variants, including D614G. The sera-neutralizing activity in less severe patients was lower than that of more severe patients for all variants. CONCLUSIONS: The cross-neutralizing activity of convalescent sera was effective against all variants but was potentially weaker for B.1.351. The high neutralizing activity specific to B.1.1.7 in the fourth wave suggests that mutations in the virus might cause conformational change of its spike protein, which affects immune recognition of D614G. Our results indicate that individuals who recover from COVID-19 could be protected from the severity caused by infection with newly emerging variants.

6.
J Infect Dis ; 223(7): 1145-1149, 2021 04 08.
Article in English | MEDLINE | ID: covidwho-1174909

ABSTRACT

Most patients with coronavirus disease 2019 (COVID-19) experience asymptomatic disease or mild symptoms, but some have critical symptoms requiring intensive care. It is important to determine how patients with asymptomatic or mild COVID-19 react to severe acute respiratory syndrome coronavirus 2 infection and suppress virus spread. Innate immunity is important for evasion from the first virus attack, and it may play an important role in the pathogenesis in these patients. We measured serum cytokine levels in 95 patients with COVID-19 during the infection's acute phase and report that significantly higher interleukin 12 and 2 levels were induced in patients with asymptomatic or mild disease than in those with moderate or severe disease, indicating the key roles of these cytokines in the pathogenesis of asymptomatic or mild COVID-19.


Subject(s)
COVID-19/immunology , Immunity, Innate , Interleukin-12/blood , Interleukin-2/blood , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Asymptomatic Infections , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing , Case-Control Studies , Female , Healthy Volunteers , Humans , Interleukin-12/immunology , Interleukin-2/immunology , Male , Middle Aged , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severity of Illness Index , Young Adult
7.
JMA J ; 4(1): 1-7, 2021 Jan 29.
Article in English | MEDLINE | ID: covidwho-1084276

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) exhibit a wide clinical spectrum ranging from mild respiratory symptoms to critical and fatal diseases, and older individuals are known to be more severely affected. The underlying mechanism of this phenomenon is unknown. A neutralizing antibody against viruses is known to be important to eliminate the virus. In addition, this antibody is induced at high levels in patients with severe COVID-19, followed by a termination of virus replication. Severe COVID-19 patients exhibit high levels of cytokines/chemokines, even after the disappearance of the virus. This indicates that cytokines/chemokines play significant roles in disease severity. These findings also suggest that antiviral therapy (monoclonal antibody and/or convalescent plasma therapy) should be administered early to eliminate the virus, followed by steroid treatment after viral genome disappearance, especially in patients with severe symptoms.

SELECTION OF CITATIONS
SEARCH DETAIL